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Abstract. Mesoscale model predictions of wind, turbulence, and wind energy capacity factors are evaluated in the Altamont

Pass Wind Resource Area of California (APWRA), where the diurnal regional seabreeze and associated terrain-driven speedup

flows drive wind energy production during the summer months. Results from the Weather Research and Forecasting model

version 4.4 using a novel three-dimensional planetary boundary layer (3D PBL) scheme, which treats both vertical and hori-

zontal turbulent mixing, are compared to those using a well-established one-dimensional (1D) scheme that treats only vertical5

turbulent mixing. Each configuration is evaluated over a nearly 3-month-long period during the Hill Flows Study, and due

to the recurring nature of the observed speedup flows, diurnal composite averaging is used to capture robust trends in model

performance. Both model configurations showed similar overall skill. The general timing and direction of the speedup flows is

captured, but their magnitude is overestimated within a typical wind turbine rotor layer. Both also fail to capture a persistent

observed near-surface jet-like flow, likely due to limited grid resolution that is typical of mesoscale models. However, the 3D10

PBL configuration shows several notable improvements over the 1D PBL configuration, including improved wind speed and

turbulence kinetic energy profiles during the accelerating phase of the speedup events, as well as reduced positive wind speed

bias at surface stations across the APWRA region. Using a mesoscale wind farm parameterization, modeled capacity factors

are also compared to monthly data reported to the U.S. Energy Information Administration (EIA) during the study period. Al-

though the monthly trend in the data is captured, both model configurations overestimate capacity factors by roughly 7–11%.15

Through model evaluation, this study provides confidence in the 3D PBL scheme for wind energy applications in complex

terrain and provides guidance for future testing.

1 Introduction

Accurate mesoscale simulations of winds in the atmospheric boundary layer are essential for wind energy resource assessment

and forecasting of wind power production. However, while wind turbines are often sited in regions of complex terrain to take20

advantage of local wind accelerations, mesoscale models are likely to experience larger errors in these regions (Jiménez and
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Dudhia, 2013; Olson et al., 2019; Chow et al., 2019; Radünz et al., 2021). Errors may result from a variety of interrelated

effects, including under-resolved terrain, model numerics, and the treatment of atmospheric turbulence and its interplay with

atmospheric stability and diurnal cycles.

First and foremost, complex terrain is usually under-resolved in mesoscale models, often referred to more generally as25

numerical weather prediction (NWP) models. Historically, operational NWP models have used horizontal grid spacing of

roughly 3 km or larger. With recent advances in computing power, NWP models have been tested with 1 km or sub-kilometer

grids (e.g., Olson et al., 2019), but their ability to capture local terrain-driven flow variability at the grid scale or smaller is

inherently limited.

Complex-terrain errors can also result from model numerics. NWP models generally use a terrain-following coordinate sys-30

tem (e.g., Gal-Chen and Somerville, 1975) because it provides a straightforward implementation of surface boundary condi-

tions. However in regions with steep terrain, the grid becomes skewed, leading to model errors that often manifest as numerical

diffusion (see, e.g., Arthur et al., 2021). A variety of approaches have been taken in the literature to address these grid-related

errors, including hybrid vertical coordinate systems, improved finite difference stencils, and immersed boundary methods (see

discussion in Arthur et al., 2022), but these are not a focus of the present study.35

All atmospheric models require a parameterization for the effects of subgrid-scale (SGS) turbulence, and this study focuses

on the treatment of atmospheric turbulence as an important source of model variability. In a mesoscale model, vertical turbulent

mixing is typically parameterized using a one-dimensional (1D) planetary boundary layer (PBL) scheme. Horizontal turbulent

mixing is assumed to be small and is therefore neglected in the governing equations. This assumption is valid in coarse-grid

simulations, but may be violated for higher-resolution simulations (Honnert and Masson, 2014; Mazzaro et al., 2017; Muñoz-40

Esparza et al., 2017; Doubrawa and Muñoz-Esparza, 2020), especially in regions with complex terrain or other sources of

horizontal heterogeneity.

To address this issue, Kosović et al. (2020) and Juliano et al. (2022) implemented a three-dimensional (3D) PBL scheme

within the widely used Weather Research and Forecasting model (WRF; Skamarock et al., 2019). The scheme is intended for

use within the so-called turbulence gray zone (Wyngaard, 2004), within which neither traditional 1D PBL schemes nor large-45

eddy simulation (LES) schemes are necessarily appropriate (see further discussion in Chow et al., 2019). Gray-zone resolution

is a function of atmospheric stability, with PBL depth being a proxy (e.g., Rai et al., 2019), but is typically considered to span

horizontal grid spacing of 100 m to 1 km.

The 3D PBL scheme parameterizes both vertical and horizontal turbulence shear stresses and turbulent fluxes, as well as their

divergences, using the framework of Mellor and Yamada (1974, 1982), which is based on a prognostic equation for the SGS50

turbulence kinetic energy (TKE). In this way, the scheme is similar to the 1D Mellor-Yamada-Nakanishi-Niino (MYNN) level

2.5 model (Nakanishi and Niino, 2006) available in WRF, but with full 3D treatment of turbulent mixing. It should be noted

that with MYNN or other 1D PBL schemes, a two-dimensional (2D) form of the Smagorinsky model (Smagorinsky, 1963) is

often used to add additional horizontal diffusion and can thus be considered a form of smoothing to improve numerical stability

(e.g., Smagorinsky, 1993).55
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In an effort to further develop the WRF 3D PBL scheme for wind energy applications, Rybchuk et al. (2022) coupled it to the

mesoscale wind farm parameterization of Fitch et al. (2012). Hereafter denoted WFP, the Fitch et al. (2012) parameterization

accounts for the presence of wind turbines by adding drag and TKE to the flow within the turbine rotor region. These effects

are aggregated over each horizontal grid cell based on the number of turbines located within the cell. The Fitch et al. (2012)

WFP is coupled to the MYNN PBL scheme in the standard WRF release (including the bug fix of Archer et al., 2020), allowing60

for direct comparisons with the 3D PBL implementation.

The initial work of Juliano et al. (2022) and Rybchuk et al. (2022) focused on developing and testing the 3D PBL scheme

in idealized model configurations, mostly with flat terrain or over open water. Juliano et al. (2022) considered idealized con-

vective boundary layer and sea breeze tests, as well as a mountain-valley test with simple terrain, while Rybchuk et al. (2022)

considered the offshore environment. Arthur et al. (2022) and Wiersema et al. (2023) subsequently evaluated 3D PBL perfor-65

mance relative to standard WRF options in real complex-terrain scenarios. However, further testing of the model is necessary

to ensure its robustness.

With this in mind, the present work has two main goals. The first is to evaluate the 3D PBL scheme in a complex-terrain

region that is relevant to wind energy. The second is to build on the work of Rybchuk et al. (2022) by testing the WFP coupled

to the 3D PBL scheme in a realistic configuration with terrain. Ultimately, this work aims to better establish the utility of the70

3D PBL scheme for wind energy applications.

2 Data and methods

2.1 Case study and observational data

The Altamont Pass Wind Resource Area (APWRA) is a collection of wind plants located in a gap within the Diablo Range of

Northern California, just east of the San Francisco Bay Area (see Figure 1). With nearly 200 turbines and roughly 326 MW of75

installed capacity spread over six plants (excluding very small, old 65 kW turbines), it is the fifth largest wind energy installation

in California and one of the oldest commercial wind farms in the United States, with the first turbines installed in 1981 (see

Hoen et al., 2018). The turbines in the APWRA are especially productive over the summer months (see Figure 2) when a

synoptic pressure difference between the ocean and the land drives westerly/southwesterly winds that are channeled through

the Altamont Pass (see, e.g., Zaremba and Carroll, 1999). These winds are modulated by diurnal temperature variability, which80

enhances the land-sea pressure difference, leading to peak wind speeds in the late afternoon to early evening local time (see, e.g.,

Wharton et al., 2015). The regularity of these summertime speedup events, combined with the importance of terrain-induced

wind acceleration, makes them a useful case study for evaluating mesoscale models (see, e.g., Banta et al., 2020, 2023).

The Hill Flow Study (HilFlowS; Wharton and Foster, 2022) consisted of two vertically profiling ZephIR300 lidars and a

52-m meteorological tower deployed at Lawrence Livermore National Laboratory Site 300, roughly 10 km southeast of the85

APWRA wind plants, during the mid-to-late summer of 2019. HilFlowS was conducted along three parallel ridgelines that run

northwesterly to southeasterly in the Diablo Range, making them perpendicular to the predominant summertime, southwesterly

(onshore) wind direction. Lidars were deployed on the first two (upwind) parallel ridgelines at the Western Observation Point

3
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Figure 1. A map of the study region, zooming in from (a) the US west coast, to (b) the WRF model domain, to (c) the APWRA. Included

in (b) and (c) are the locations of observation stations (black symbols) used for model evaluation, the locations of APWRA wind turbines

at the time of the HilFlowS study (colored by their rated power), the terrain elevation as represented in the model, and the coastline of San

Francisco Bay (dark gray contour). Dashed-line boxes indicate zoomed-in regions in the next panel to the right, while the dotted-line box in

(b) indicates the region shown in Fig. 7.

(WOP) and Eastern Observation Point (EOP), which are separated by a line-of-sight distance of 860 m. The WOP ridgeline

has a higher peak (527 m MSL), while the EOP peak is slightly lower (448 m MSL). The ridgeline slopes, respectively, are90

22◦ and 13◦ along the predominant wind direction of 240◦. The meteorological tower is found on the third ridgeline and is at

an elevation of 395 m MSL. The study area and surrounding region is largely covered by grassland. All instrument and turbine

locations are included in Figure 1.

Wind speed data from the two lidars are used here to evaluate model performance between the surface and 150 m AGL,

spanning the vertical range of the turbines in the APWRA. Both lidars gathered horizontal wind speed, wind direction, and95

vertical velocity data at 10, 20, 30, 38, 50, 60, 70, 80, 90, 120, and 150 m AGL (note that 38 m is a fixed calibration height),

between 9 July and 23 September 2019. Horizontal wind speed, direction, air temperature, and air pressure data are also

available at 1 m AGL from an on-board meteorological station, although only the wind speed and direction data are used here.

While the lidars completed their scan strategy roughly once every 15 s, the data have been averaged in 10-min intervals

as in Wharton and Foster (2022). Over the study period, the WOP lidar had greater than 98% data availability for horizontal100

wind speed/direction, and roughly 90% data availability for vertical velocity. The EOP lidar ran on solar/battery power, which

resulted in slightly lower data availability of roughly 84% and 77%, respectively. Lower data availability for the vertical

velocity, relative to the horizontal, is a result of standard quality control filtering applied by the lidars when calculating 10-

min averages, which removes the vertical velocity when rain or fog are detected. Diurnal composite averages over the nearly
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Figure 2. Monthly capacity factors for the six wind plants in the APWRA, based on EIA-reported data (EIA, 2023a, b) averaged over 2014–

2021. The shaded area represents ± 1 standard deviation. The average over all plants is weighted by plant capacity as noted in the legend.

Note that Summit Wind became operational in 2021.

3-month-long data record were analyzed by Wharton and Foster (2022) and shown to be robust; a similar composite averaging105

approach is used in the present study for model evaluation.

Horizontal wind speed, wind direction, and vertical velocity are calculated from lidar observations using the velocity-azimuth

display (VAD) technique for each measurement height. Note that the ZephIR300 does not have a vertically pointing beam, thus

vertical velocities are not measured directly. TKE is calculated using high-frequency variance measurements during post-

processing (see section 3.1.2). Reported accuracy for the ZephIR300 in ideal site conditions (e.g., flat, homogeneous terrain) is110

±0.25% for wind speed and direction. However, the HilFlowS experiment was not conducted under these ideal conditions. In

hilly terrain, assumptions about the horizontal homogeneity of the flow across the lidar’s observation volume may be invalid.

Because this assumption is used in the calculation of both horizontal and vertical wind speeds, lidar accuracy in complex terrain

is reduced and it is important to remember that the measurements themselves may have bias or other sources of uncertainty.

To assess errors in horizontal wind speed, data is examined from an earlier experiment in the APWRA (Wharton et al., 2015)115

that used identical ZephIR300 lidars to measure hill speedup flows and their effects on power production. In that study, wind

speed measurements were corrected for terrain-induced errors during post-processing using the Dynamics software package

(ZephIR Ltd.), based on the work of Bingöl et al. (2009). Dynamic conversion factors for all wind directions and measurement

heights ranged from +1% to +8% for the hill lidar. Although these ranges are relatively large, the correction factors associated
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with the predominant wind direction were closer to zero: +3% for the hill lidar and -2% for the base lidar near the bottom of120

the hill. These correction factors were calculated for a hill that is similar to those at the HilFlowS site.

To supplement lidar observations, wind speed and temperature data are available from the meteorological tower at 10, 23,

and 52 m AGL. Wharton and Foster (2022) used these data to assess atmospheric stability via the bulk Richardson number;

here, the temperature data are used for model evaluation. Furthermore, before the start of HilFlowS, the lidars were deployed at

the base of the meteorological tower to assess instrument agreement. That dataset showed strong agreement between the lidars125

and the tower, with r-squared values of 0.97-0.99 for all measurement levels.

To further examine the spatial variability of model performance, 10-m wind speed data from nearby surface meteorological

stations in the MesoWest network (Synoptic, 2023) are used. Although proprietary turbine data from the APWRA wind plants

are not generally available, public power production data reported to the United States Energy Information Administration

(EIA) on a monthly basis (EIA, 2023a, b) are used to evaluate estimates of wind power production from the WFP. Note that130

site-specific wind power studies have been performed previously in the APWRA, as presented in Wharton et al. (2015) and

Bulaevskaya et al. (2015).

Rios et al. (2024) used HilFlowS lidar data to evaluate the High-Resolution Rapid Refresh model (HRRR; Benjamin et al.,

2016; Dowell et al., 2022). HRRR is an operational forecast model with 3 km horizontal grid spacing that is maintained by the

National Oceanographic and Atmospheric Administration (NOAA) and used frequently by the wind energy industry (Shaw135

et al., 2019). Rios et al. (2024) found that while HRRR captured the general diurnal trend of the observed speedup events,

it overestimated hub-height wind speeds (by as much as 3 m s−1) during nighttime hours, and underestimated hub-height

wind speeds by as much as 2 m s−1 during daytime hours. Wind speed errors also varied spatially and as a function of the

predominant wind direction associated with different synoptic conditions. These results serve as a baseline for the present

study, which explores the effects of increased grid resolution (relative to HRRR) and PBL treatment on model performance.140

2.2 Model configuration

2.2.1 Domain and model options

The WRF model version 4.4 is employed with a horizontal grid spacing of 1 km over the 120×120 km domain depicted

in Figure 1b. The model is initialized on 6 July 2019 0000 UTC, allowing for roughly two days of spinup time prior to

observational comparisons, and run through 24 September 2019 0000 UTC. Initial and boundary conditions are derived from145

hourly HRRR analysis fields (at the 0th forecast hour), but interior nudging is not employed due to the relatively small domain.

The WRF namelist and wind turbine specification files used in this study are archived under Arthur (2024).

Simulations are completed with two model configurations, varying only the treatment of SGS turbulent mixing. The first

configuration is treated as a control and roughly corresponds to the standard HRRR setup, while the second configuration

employs the 3D PBL scheme. Recall that HRRR uses a horizontal grid spacing of 3 km; the present value of 1 km was chosen150

to increase resolution relative to HRRR while also approaching both the upper limit of traditional mesoscale models and the

lower limit of the turbulence gray zone.
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In the control configuration, vertical turbulent mixing is treated using the MYNN level 2.5 PBL scheme (bl_pbl_opt=

5), while horizontal mixing is not treated explicitly; rather, horizontal smoothing is employed with WRF’s 2D Smagorinsky

scheme (km_opt= 4). In the second configuration, both vertical and horizontal turbulent mixing are treated using the 3D PBL155

scheme. Following Rybchuk et al. (2022), Arthur et al. (2022), and Wiersema et al. (2023), the boundary layer approximation is

used within the 3D PBL scheme (pbl3d_opt= 1) to improve computational efficiency and numerical stability (see discussions

therein, and in Juliano et al., 2022). The boundary layer approximation retains the calculations of horizontal turbulence shear

stresses and turbulent fluxes, and their divergences, but neglects the impact of horizontal velocity shear on the the stresses.

Note that in both configurations, local curvilinear-grid metric terms are used in the calculation of horizontal gradients (as with160

WRF’s diff_opt= 2), although diff_opt is set to 0 when the 3D PBL scheme is used. All other model options are identical

between the two configurations.

For consistency with the HRRR forcing, the present model runs use the HRRR atmospheric physics suite following Benjamin

et al. (2016). This includes the Rapid Update Cycle (RUC) land-surface model (sf_surface_physics= 3), the Thompson

aerosol-aware microphysics scheme (mp_physics= 28; Thompson, 2014), and the RRTMG radiation schemes (ra_sw_physics=165

4 and ra_lw_physics= 4; Iacono et al., 2008). However, for compatibility with the 3D PBL scheme, the revised MM5 surface

layer scheme (sf_sfclay_physics= 1) is used instead of the MYNN scheme (sf_sfclay_physics= 5). Additionally, fol-

lowing Arthur et al. (2022), WRF’s option to add positive-definite 6th order horizontal diffusion (diff_6th_opt= 2) is used

in both configurations with a factor of 0.25. To prevent over-diffusion in regions of sloping terrain, where numerical diffusion

is expected to be relatively large, diff_6th_slopeopt is set to 1 with a threshold value of diff_6th_thresh= 0.05.170

The vertical grid spacing is modified from HRRR in the present study to increase vertical grid resolution within the turbine

layer. HRRR uses 50 vertical levels, with a vertical grid spacing of ∆z ≈ 16 m at the surface such that the first half level (the

lowest level at which temperature and velocities are calculated) is located at roughly 8 m AGL. The vertical grid spacing is

stretched above the surface, as detailed in Benjamin et al. (2016), with a domain top of roughly 25 km. Here, ∆z is held constant

at 16 m between the surface and roughly 300 m AGL (19 levels), and stretched with a factor of 1.1 above, with a total of 69175

levels. Although Tomaszewski and Lundquist (2020) and Rybchuk et al. (2022) recommend setting ∆z to 10 m or less with

the WFP, this was found to be computationally unstable for the 3D PBL run; ongoing improvements to the 3D PBL scheme

may alleviate this issue in the future. Note also that the present model runs use WRF’s standard terrain-following vertical

coordinate system (hybrid_opt= 0), as in Arthur et al. (2022). Although WRF’s hybrid vertical coordinate (hybrid_opt= 1)

is used in HRRR version 3 (used here for model forcing, see Dowell et al., 2022), the hybrid coordinate system primarily180

affects predictions above the boundary layer and is therefore not considered here.

2.2.2 Wind turbine representation

The Fitch et al. (2012) WFP, including the bug fix of Archer et al. (2020), is used in both model runs to predict the power output

by APWRA turbines during the diurnal speedup events. Turbines are represented in the WFP by their location, hub height, rotor

diameter, and power/thrust curves. The necessary WRF-WFP input files used in this study are archived under Arthur (2024). For185

consistency with Rybchuk et al. (2022), the wind farm TKE factor (WRF namelist variable windfarm_tke_factor), which
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Table 1. A summary of wind plants in the APWRA during the summer 2019 study period. Actual turbine specifications are based on Hoen

et al. (2018), while modeled turbines are based on the best-available public data and are colored by their rated power in Figure 1. Note that

the 62 MW Summit Wind plant shown in Figure 2 was installed after the study period and is therefore not included here. The Patterson Pass

and Patterson Wind plants (included in Hoen et al., 2018), which consist of very small (65 kW), old turbines, are also not considered in the

analysis.

Actual Modeled

Wind Plant # Turbines Mfr-PR [MW] H,D [m] Mfr-PR [MW] H,D [m]

Golden Hills North 20 GE-2.3 80, 116 NREL-2.3 80, 116

Vasco 34 Siemens-2.3 80, 101 NREL-2.3 80, 107

Golden Hills 48 GE-1.7 80, 100 NREL-1.7 80, 103

Buena Vista 38 Mitsubishi-1.0 55, 61 Bonus-1.0 55, 54

Diablo Winds 31 Vestas-0.66 60, 47 Vestas-0.66 60, 47

Total 171 264.26 MW 264.26 MW

controls the amount of TKE added to the flow, is set to 1. This differs from the value of 0.25 used by Archer et al. (2020). As

of the time of this writing, there is no clear consensus in the literature on the optimal choice for this parameter (Larsén and

Fischereit, 2021; Ali et al., 2023). Note that although wind farm wake dynamics are predicted by the WFP, they are not a focus

of the present study. Moreover, wakes are not expected to reach the HilFlowS observation sites given the complex terrain and190

predominant wind direction of 240◦.

At the time of the study period, the APWRA consisted of 171 total turbines spread across 5 wind plants, summarized in

Table 1. Turbine locations (as shown in Figures 1 and 7) and specifications are extracted from the United States Wind Turbine

Database (Hoen et al., 2018). However, the present analysis excludes very small (65 kW), old turbines that are still listed in

Hoen et al. (2018).195

Because the power and thrust curves for the actual APWRA turbines are generally proprietary, comparable publicly available

curves are used here (see Table 1). The General Electric (GE) 2.3, Siemens 2.3, and GE 1.7 MW APWRA turbines are matched

as closely as possible to the generic dataset of NREL (2022), which is based on the OpenFAST model (https://github.com/OpenFAST)

and includes both power and thrust curves. However, since lower-power turbines are not included in the NREL (2022) dataset,

additional curves are gathered from the dataset of wind-turbine-models.com (2024b, a). Within this dataset, a power curve for200

the Vestas 0.66 MW turbine is available (wind-turbine-models.com, 2024b); however, the thrust curve must be interpolated

from the generic NREL 1.7 model. For the Mitsubishi 1.0 MW turbine, a comparable power curve from a Bonus 1.0 MW

turbine (wind-turbine-models.com, 2024a) is used, again with a thrust curve interpolated from the generic NREL 1.7 model.

The modeled APWRA turbines have the same total rated capacity of 264.24 MW as the installed turbines at the time of

the study period (Table 1). Furthermore, Siedersleben et al. (2020) demonstrated that the exact details of the power and thrust205

curves are not critical to WFP performance. Ultimately, modeled capacity factors, rather than raw power production estimates,
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are presented below. Thus, the effect of differences between the actual and modeled turbine specifications is expected to be

small.

3 Model evaluation

3.1 Vertical variability210

3.1.1 Wind speed, wind direction, and temperature

Model performance is first evaluated through comparison to lidar observations from the HilFlowS experiment (Wharton and

Foster, 2022). The model bias BV AR is defined as

BV AR = V ARWRF −V AROBS , (1)

where V AR is the meteorological variable, either horizontal wind speed V , wind direction φ, vertical velocity w, or turbulence215

kinetic energy TKE. A positive bias indicates an overestimate by the model, while a negative bias indicates an underestimate.

The bias is calculated at 10-min intervals, corresponding to the frequency of the processed lidar data as well as the model

output. The bias calculation requires spatial interpolation of the model data to the lidar measurement locations. Model data are

first interpolated horizontally to the latitude/longitude of the lidar, using nearest neighbor interpolation, and are then linearly

interpolated to the lidar vertical levels.220

Due to the day-to-day consistency of the observed speedup events, diurnal composite averages can be used to summarize

model performance over the nearly 3-month-long study period (see Figure 3). Averages are performed between 9 July 2019

0000 PST and 23 September 2019 0000 PST such that only complete days in local time (PST=UTC-8) are included in the

analysis. Model results in Figure 3 are shown for the 3D PBL configuration, although those for the MYNN configuration are

visually similar; more detailed comparisons between the two are discussed below. Note that while the figures in this section225

are shown at the WOP site for brevity, the discussion generally applies to both sites unless otherwise noted. Error metrics are

shown for both sites in Table 2.

As presented in Wharton and Foster (2022), observed winds at the study site begin to accelerate around midday, reaching a

peak between 1500–2100 PST. Winds then decelerate over the course of the night, reaching a minimum between 0600–0900

(Figure 3a). The speedup flows, which are channeled through the Altamont Pass, are predominantly southwesterly (230-250◦),230

while daytime flows are more variable (Figure 3c). The speedup flows at the study site are associated with subsidence, a

negative vertical velocity (blue colors in Figure 3e), and increased horizontal wind speeds near the surface (yellow colors in

Figure 3a). As discussed in Rios et al. (2024), this suggests that vertical convergence leads to horizontal divergence and an

acceleration of the flow near the surface.

While the model captures the timing and direction of the speedup flows well (Figure 3b,d), wind speeds are generally235

overestimated above 30 m AGL, especially between 0000–0300 PST (red colors in Figure 3b). Conversely, wind speeds are

underestimated near the surface, indicating that the model fails to capture near-surface accelerations. This highlights an inherent

9
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Figure 3. Diurnal composite average WOP lidar observations and 3D PBL model bias. Positive bias (red) indicates an overestimate by the

model, while negative bias (blue) indicates an underestimate. Shown are wind speed V (a,b), wind direction φ (c,d), and vertical velocity

w (e,f). To better contextualize the vertical velocity bias in (f), contour lines are shown for the modeled vertical velocity in 0.1 m s−1

increments. Dotted lines in (a) indicate the rotor-swept area of the most prevalent generic turbine model in the simulations, with hub-height

H = 80 m and rotor diameter D = 103 m (NREL-1.7; see Table 1).
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Table 2. Model error metrics for each configuration at each lidar site, averaged over the full study period.

Site WOP WOP EOP EOP

Model 3DPBL MYNN 3DPBL MYNN

FBV 0.0018 -0.0060 -0.032 -0.039

NMAEV 0.27 0.27 0.28 0.28

SAA [◦] 13 13 12 12

|Bw| [m s−1] 0.27 0.27 0.25 0.25

FBTKE -0.48 -0.12 -0.12 0.16

NMAETKE 0.72 0.60 0.60 0.60

limitation of the vertical grid setup, which, although finer than HRRR, has only several model levels within the observed jet-like

flow layer. While the model captures some negative vertical velocities at the study site during the speedup events (see contours

in Figure 3f), its vertical velocities are too weak and thus do not translate to near-surface accelerations of the magnitude seen240

in the observations.

Several error metrics (following e.g., Chang and Hanna, 2004; Smith et al., 2018; Wiersema et al., 2020; Arthur et al., 2022)

are used to compare the performance of the two model configurations over the course of the study period. The fractional bias

is defined as

FBV AR =
BV AR

0.5
(
V ARWRF +V AROBS

) , (2)245

and the normalized mean absolute error is defined as

NMAEV AR =
|BV AR|

0.5
(
V ARWRF +V AROBS

) , (3)

where the overbar denotes an average over all available observations for a given lidar (both vertically and in time). For the

wind direction, the scaled average angle is defined as

SAA=
1

NVWRF

N∑

i=1

VWRF,i|Bφ,i|, (4)250

where N is the total number of observations for the given lidar. SAA weighs wind direction errors based on the modeled wind

speed at the given observation location and time, assuming that directional errors at low wind speeds are less impactful.

Overall, error metrics are nearly equal for the MYNN and 3D PBL configurations at both sites (see Table 2). For example,

at WOP, the normalized mean absolute wind speed error is 27%, the scaled average angle is 13◦, and the average vertical

velocity error is 0.27 m s−1. Note that the vertical velocity error is not normalized because w has both positive and negative255

values. However, more detailed differences between the two model configurations can be seen in composite average wind speed

profiles presented in Figure 4.
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Figure 4. Diurnal composite average wind speed profiles, shown for WOP lidar observations and both model configurations. Profiles are

averaged over the hour indicated at the top of each panel, and model data have been interpolated to the vertical levels of the lidar, as in

Figure 3. The shaded regions show ± 1 standard deviation, as well as potential ± 10% error in the observations following Bingöl et al.

(2009). Dotted lines indicate the rotor-swept area of the most prevalent generic turbine model in the simulations, with hub-height H = 80 m

and rotor diameter D = 103 m (NREL-1.7; see Table 1).

During the onset of the speedup events, the 3D PBL configuration predicts faster wind speeds than the MYNN configuration

throughout the lidar range, showing reduced bias compared to the observations, especially below hub height (assumed to

be 80 m; Figure 4, 1200–1500 PST). During the peak of the speedup flow, however, the 3D PBL configuration begins to260
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overestimate wind speeds below hub height, showing a slightly more pronounced jet near the surface relative to the MYNN

configuration (Figure 4, 1800–2100 PST). This pronounced jet persists into the night for both model configurations, until

roughly 0000 PST. Then, as the flow decelerates in the early morning, both model configurations tend to overestimate wind

speeds throughout the rotor layer (Figure 4, 0300–0600 PST). Finally, when the flow reaches a minimum around 0900 PST, both

models underestimate wind speeds throughout the rotor layer, with a slightly larger underestimate in the 3D PBL configuration.265

As mentioned previously, the resolution of the present simulations limits the ability of the model to capture the observed

jet-like flow near the surface. Both model configurations produce a pronounced jet below hub-height and reduced wind speeds

above (Figure 4, 2100–0600 PST). However, this jet development leads to wind speed overestimates near the surface in the

present case study. Further development and testing of the 3D PBL scheme could lead to more accurate predictions, especially

if near-surface vertical resolution is increased. Notably, the 3D PBL scheme allows more run-time flexibility in turbulence270

treatment (via, e.g., the closure constants) relative to MYNN and other 1D PBL schemes, which could facilitate performance

improvements.

To further contextualize model wind speed biases, it is important to recall that conically scanning lidars such as the

ZephIR300 deployed during HilFlowS are known to experience errors in complex terrain (Bingöl et al., 2009). These er-

rors result from violating the assumption of homogeneity that the lidars use to deduce the horizontal and vertical wind speeds.275

In particular, Bingöl et al. (2009) found horizontal wind speed errors as large as 10% in complex terrain, as compared to a

few percent or less over flat, homogeneous terrain. Their result implies horizontal wind speed errors as large as roughly 1.5

m s−1 in the HilFlowS lidar observations, especially near the surface. In general, the expected maximum error is smaller than

the standard deviation of the diurnal composite (see gray shading in Figure 4). Bingöl et al. (2009) did not quantify errors in

vertical velocities, but these are also expected to be present in complex terrain due to the ZephIR300 lidar’s lack of a vertically280

pointing beam.

To complement wind profile comparisons at the lidar sites, temperature profiles at the meteorological tower site are shown

in Figure 5. Note that the meteorological tower is on a similar hill to that found at WOP and EOP, and is separated by a line-of-

sight distance of 950 m from EOP. The 3D PBL configuration shows better agreement with the observed temperature profile

for most hours of the day, especially during daytime conditions when the vertical temperature gradient is negative (0900–285

1500 PST). This time corresponds to reduced wind speed bias at both lidar sites. Improvements in the temperature prediction

are also seen during the evening transition, as the vertical temperature gradient becomes positive (1800–2100 PST). At these

times, the 3D PBL scheme produces a more pronounced near-surface jet, but shows larger wind speed bias relative to MYNN,

as discussed above.

3.1.2 Turbulence kinetic energy290

Both the 3D PBL and MYNN schemes parameterize SGS turbulence shear stresses and turbulent fluxes using a prognostic

equation for the SGS TKE. Thus, TKE predictions can provide insights into model performance. TKE estimates are also
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Figure 5. Diurnal composite average temperature profiles (T0 = 300 K), shown for the HilFlowS 52-m meteorological tower and both model

configurations. Profiles are averaged over the hour indicated at the top of each panel, and model data have been interpolated to the vertical

levels of the tower observations. The shaded regions show ± 1 standard deviation. Note that the vertical axis range is limited to the tower

height.

available from the HilFlowS lidars, and are calculated as

TKE =
1
2
(
〈u′2〉+ 〈v′2〉+ 〈w′2〉

)
, (5)

where u, v, and w denote velocities in the zonal, meridional, and vertical directions, respectively, and brackets denote 10-min295

averages. Perturbation quantities, denoted by the prime symbol, are calculated as the difference between the high-frequency
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(15-s) time series and a detrended time series based on 2-min averages. There are inherent differences in the modeled vs. ob-

served TKE calculations, which should be considered when making direct comparisons. The lidar TKE estimates are spatially

averaged over the lidar’s conical scanning volume and are time-averaged in 10-min windows. Lidar TKE estimates are also

influenced by errors in complex terrain, as discussed above for wind speeds. The modeled TKE is fully parameterized (i.e., it300

is assumed that there is no resolved TKE) in each model grid cell and is output as an instantaneous value every 10 min.

Keeping these limitations in mind, comparison of modeled TKE with lidar estimates shows differences between the two PBL

configurations. Based on fractional bias and normalized mean absolute error metrics (see Table 2), the 3D PBL configuration

tends to predict lower TKE values, relative to observations, over the full study period. TKE profiles, shown in Figure 6 for

the WOP site, highlight additional variability in model performance. In the midday, observed TKE is elevated throughout the305

lidar’s vertical range due to surface heating and associated atmospheric instability. The speedup flows are also accelerating

during this time, leading to peak TKE values below 50 m AGL due to shear associated with the jet-like velocity profile

(Figure 6a, 1200–1800 PST). Both model configurations capture elevated TKE during this time (Figure 6b,d). However, while

the MYNN configuration generally overestimates the TKE throughout the lidar range (Figure 6c), the 3D PBL configuration

predicts lower TKE values that generally lead to underestimates (Figure 6e). Reduced TKE is associated with improved velocity310

profile predictions at this time (see Figure 4, 1200–1500 PST), although the near-surface jet-like flow is not captured by the

model. During and after the peak of the speedup flow (1800–0900 PST), both model configurations underestimate the TKE

throughout the lidar range, especially below 50 m AGL.

Arthur et al. (2022), in their cold-air pool case study, also found that the 3D PBL scheme predicts lower TKE values as

compared to MYNN. As in the present study, this generally led to a reduction in TKE overestimates, but an increase in TKE315

underestimates. Moreover, times of reduced TKE overestimates were associated with improved velocity profile predictions.

It is important to note that modeled TKE predictions depend on parameters such as the turbulence length scale and closure

constants, which differ in the between the MYNN and 3D PBL schemes as configured here (and in Rybchuk et al., 2022; Arthur

et al., 2022; Wiersema et al., 2023). These parameters were not varied in the present study, although the reader is referred to

Arthur et al. (2022) for a discussion of model sensitivity.320

3.2 Horizontal variability

To extend the analysis beyond the HilFlowS lidar locations, MesoWest stations are used to examine horizontal variability in

model performance around the APWRA turbines. MesoWest wind data are generally available at 10 m AGL (Synoptic, 2023).

Here, wind speed data are used at select stations shown in Figures 1 and 7. For clarity in the analysis, only stations along

the primary wind direction (230-250◦; see Figure 3c) are considered. Furthermore, overlapping stations and those reporting325

predominantly 0 m s−1 velocity readings are excluded.

The fractional bias, defined in equation 2, is used to evaluate the spatial variability of model wind speed errors. FBV is

similar to the NMAEV metric defined in equation 3, but it includes the sign of the error. While this value tends to be small

over the full profile due to averaging over both positive and negative bias values at different measurement heights (see Table 2

and Figure 4), at a single height it more reliably quantifies model over- vs. underestimates.330
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Figure 6. Diurnal composite average TKE observations at the WOP lidar (a) compared to model results (b–e). Modeled TKE and bias are

shown for the MYNN PBL (b,c) and 3D PBL (d,e) configurations. Positive bias (red) indicates an overestimate by the model, while negative

bias (blue) indicates an underestimate. Dotted lines in (a) indicate the rotor-swept area of the most prevalent generic turbine model in the

simulations, with hub-height H = 80 m and rotor diameter D = 103 m (NREL-1.7; see Table 1).
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Figure 7. Fractional wind speed bias FBV at 10 m AGL for MYNN (purple) and 3D PBL (green) configurations at meteorological obser-

vation stations in the APWRA. Station markers are colored by the sign of the bias in the MYNN configuration, blue for negative and red

for positive. Gray contour lines are shown at 100 m intervals between 100 and 1000 m AGL, and gray dots represent cell centers on the

∆x= 1 km model grid. The portion of the domain shown here is highlighted by the dotted-line box in Figure 1b. Inset is a summary of 10-m

FBV at all stations, sorted in descending order based on the value for the MYNN configuration.

Spatial evaluation of model performance shows that the 3D PBL scheme tends to reduce model overestimates of the 10 m

wind speed relative to MYNN. As summarized in the inset of Figure 7, the 3D PBL configuration has a lower 10-m FBV value

at all but 1 of the 20 stations with positive bias. At the 8 locations with negative bias, the value for the 3D PBL configuration

tends to be more negative, as is true at both lidar sites and the meteorological tower. This suggests that model underestimates

are related to near surface jet-like flows (as shown in Figure 4). However, additional vertical profile data would be necessary335

for confirmation.
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4 Wind energy predictions

4.1 Hub-height and rotor-equivalent wind speeds

To better establish the utility of the 3D PBL scheme for wind energy applications, model evaluation is extended to wind energy-

specific quantities, including hub-height and rotor-equivalent wind speeds. The rotor-equivalent wind speed VEQ is often used340

in wind energy resource and turbine performance assessment (Wagner et al., 2014), and is recommended by the International

Electrotechnical Commission (IEC) for determining power curves and annual energy production (see Van Sark et al., 2019).

VEQ more accurately captures the kinetic energy flux through the rotor-swept area, as compared to a single hub-height wind

speed measurement VHH . However, substantial differences between VEQ and VHH are generally only seen at times of high

shear (e.g., Van Sark et al., 2019; Redfern et al., 2019).345

Following Wagner et al. (2014), the rotor-equivalent wind speed is defined as

VEQ =

(
Nh∑

i=1

V 3
i

Ai
A

)1/3

(6)

where Nh is the number of observation heights, A is the total rotor-swept area, and

Ai =

zi+1∫

zi

2
√
R2− (z−H)2dz (7)

is the area of the rotor disk segment corresponding to the ith observation height, with rotor radius R and hub height H . The350

integral in equation 7 is evaluated analytically with zi and zi+1 representing the lower and upper bounds of the ith rotor disk

segment, which are by definition located halfway between available observation points. Here, VEQ is calculated using both

HilFlowS lidar data and model predictions. The modeled wind speed profiles are interpolated to the lidar observation locations

as in the bias calculations in Section 3.

As in Figures 3 and 4, a diurnal composite average captures the trend of the hub-height and rotor-equivalent wind speeds355

during the study period (see Figure 8 for WOP and Figure 9 for EOP). The observed hub-height wind speed gradually increases

over the course of the day, reaching a peak around 1800 PST. It then decreases gradually, reaching a minimum around 0900

PST. The observed rotor-equivalent wind speed follows a similar trend. Note that here, VEQ is calculated with a hub height

H = 80 m and a rotor diameter D = 103 m, which corresponds to the most prevalent generic turbine model in the simulations

(NREL-1.7; see Table 1) and is also representative of most APWRA turbines (see discussion in Section 2.2.2 and Table 1).360

The modeled hub-height and rotor-equivalent winds speed are generally underestimated at both sites, as compared to the

observations, during the ramp-up portion of the speedup event (0900–1500 UTC). The 3D PBL configuration shows improved

predictions during this time, reducing the negative bias by as much as 50%. Then, during the peak and decreasing portion of

the speedup event, the modeled hub-height and rotor-equivalent wind speeds are generally overestimated (1500–0900 UTC).

While the 3D PBL configuration shows larger overpredictions than the MYNN configuration at the peak of the speedup event,365

its performance is similar to or slightly better than MYNN for the rest of the night.
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Figure 8. Diurnal composite average hub-height wind speed VHH and rotor-equivalent wind speed VEQ. (a) Results for WOP lidar obser-

vations and both model configurations; (b) model bias, including a summary of time-averaged values. In (a), the shaded regions show ± 1

standard deviation for VHH , as well as potential± 10% error in the observed VHH following Bingöl et al. (2009). VEQ is calculated with hub

height H = 80 m and rotor diameter D = 103 m, corresponding to the most prevalent generic turbine model in the simulations (NREL-1.7;

see Table 1).

The difference between the observed hub-height and rotor-equivalent wind speeds is larger at EOP than at WOP, highlighting

differences in vertical shear between the sites despite similar wind climatology overall. As shown in Wharton and Foster (2022),

the EOP site has lower wind speeds in the bottom half of the rotor layer for an 80-m turbine, causing VEQ to be lower than VHH

(see Figure 7b therein). This variability is not captured in the model, which predicts similar hub-height and rotor-equivalent370

wind speed values at both sites. Thus, at the EOP site, model bias values are larger for VEQ, by as much as 2 m s−1 compared

to VHH . At the WOP site, bias values for both quantities are similar. This analysis demonstrates the potential effect of using

VEQ when evaluating model performance for wind energy applications in regions with highly sheared wind speed profiles.
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Figure 9. As in Figure 8, but for the EOP site.

4.2 Monthly capacity factors

Although the flows at the HilFlowS lidar locations are expected to be representative of those experienced by the APWRA375

turbines, more localized effects may contribute to turbine performance (see, e.g., Wharton et al., 2015; Bulaevskaya et al.,

2015). For this reason, the Fitch et al. (2012) WFP is used in both model runs to represent the interaction between the APWRA

turbines and the diurnal speedup events. Because Rybchuk et al. (2022) considered only an ocean environment with no terrain

in their testing of the 3D PBL-WFP implementation, the present case study presents an opportunity to further evaluate the

implementation in a realistic complex-terrain scenario.380

Diurnal composite average capacity factors for the WFP-modeled APWRA turbines are shown by month in Figure 10 to

illustrate changes in production over the roughly 3-month-long study period. The overall trend is similar to that shown in

Figure 2, with the highest capacity factors in July, a slight decrease in August, and a more substantial decrease in September.

However, the same diurnal trend remains, indicating the prominence of the speedup flows throughout the mid-to-late summer.
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Figure 10. Diurnal composite average capacity factor, by month during the study period, for modeled APWRA turbines.

The capacity factors in Figure 10 follow the trend of the hub-height and rotor-equivalent wind speeds at both lidar sites385

(shown in Figure 8 and Figure 9). Notably, however, there is a roughly 3-hour delay in the timing of the peak and minimum

capacity factors relative to the modeled wind speeds at the HilFlowS lidar sites. This suggests differences in the timing of the

speedup flows between the HilFlowS site and the APWRA, despite their relative proximity, and highlights the influence of

terrain on power production.

Despite this time lag, larger differences in bias magnitude between the two model configurations tend to correspond to times390

of larger differences in the modeled APWRA capacity factor. Figure 11 shows a scatter plot of the difference in the magnitude

of the hub-height wind speed bias ∆|BVHH
| at WOP vs. the difference in modeled capacity factor ∆CF between the MYNN

and 3D PBL configurations. Differences are calculated as MYNN PBL minus 3D PBL using a diurnal composite average

and colored by the time of day. Thus, for example, quadrant I indicates times when lower bias for the 3D PBL configuration

corresponds to lower capacity factors in the 3D PBL configuration.395

As seen in Figure 10, the 3D PBL configuration generally predicts higher capacity factors than the MYNN configuration

during the accelerating phase of the speedup event (1200–1800 PST), while the opposite is true during the peak and decelerating

phase (1800–1200 PST). These differences in capacity factor roughly correlate with times at which the 3D PBL configuration

displays lower bias values at the WOP lidar site (see quadrants IV and I, respectively, in Figure 11). Note that during the late

acceleration phase just before the peak of the speedup event (1500–1800 PST), when the MYNN configuration displays lower400

bias, capacity factors in the 3D PBL configuration tend to be slightly higher (see quadrant III in Figure 11). Additionally, during
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Figure 11. A scatter plot of the difference in the magnitude of the hub-height wind speed bias ∆|BVHH | at WOP vs. the difference in

modeled capacity factor ∆CF , between the MYNN and 3D PBL configurations. Differences are calculated as MYNN PBL minus 3D PBL

using a diurnal composite average, and colored by the time of day. Quadrants are labeled by the phase of the diurnal speedup event and

correspond to the following differences (as noted in the axis labels): relative to the MYNN configuration, the 3D PBL configuration has (I)

lower bias, lower CF ; (II) higher bias, lower CF ; (III) higher bias, higher CF ; (IV) lower bias, lower CF .

the late deceleration phase (0900–1200 PST), when the MYNN configuration again displays lower bias, capacity factors in the

3D PBL configuration tend to be lower (see quadrant II in Figure 11).

To further evaluate the performance of the 3D PBL-WFP configuration during the HilFlowS study period, modeled monthly

capacity factors are compared to those calculated with publicly available data (Figure 12). The EIA collects monthly plant-405

level generation data within the United States (EIA, 2023a, b, as shown in Figure 2). These data are depicted in Figure 12

(black bars) as an average over the five wind plants shown in Table 1, weighted by rated plant capacity. Because plant-level

information is not available in WRF output, modeled monthly capacity factors in Figure 12 (colored bars) are shown as an

average over the APWRA as a whole.
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Figure 12. Comparison of modeled vs. EIA-reported (EIA, 2023a, b) monthly capacity factors in the APWRA during the study period.

Overall, the modeled monthly capacity factors follow the decreasing trend evident in the EIA data. However, the model410

generally overestimates the reported values by roughly 7–11%. Several factors likely contribute to this overestimate. Most

notably for this study, overestimated wind speeds in the model, especially during the night (see Figures 4, 8, and 9), likely

lead to overestimated power production. Additionally, the model does not account for turbine downtime, for example, due to

curtailment or maintenance, which reduces the reported monthly production; this likely also contributes to model overestimates.

Keeping these caveats in mind, the 3D PBL configuration predicts slightly lower monthly capacity factors relative to the415

MYNN configuration (roughly 1% or less, see Figure 12). However, differences are more pronounced in the monthly diurnal

composite average comparisons, especially at night (see Figure 10, 1800–0600 PST), when the capacity factors in the 3D PBL

configuration are up to roughly 6% smaller than those in the MYNN configuration. These results, along with those in Figures 4,

8, 9, and 11, suggest that the 3D PBL scheme’s wind power predictions may be slightly closer to reality. However, comparisons

to higher-frequency (e.g., hourly) turbine- or plant-level data are necessary for a more robust evaluation.420
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Figure 13. Spatial variability of modeled monthly capacity factors in the APWRA during the study period, using data from the 3D PBL

configuration. Circles are shown for each model grid cell that contains turbines; the color scale represents the capacity factor and the size

of the circle represents the total capacity in the given cell. Gray contour lines show the terrain at 100 m intervals between 100 and 1000 m

AGL, and gray dots show cell centers on the ∆x= 1 km model grid.

Although turbine- and plant-level data are not output by the WFP, grid cell-level data reveal some spatial variability in

modeled monthly capacity factor. Figure 13 shows the capacity factor and total capacity in each model grid cell that contains

turbines. Results are based on the 3D PBL configuration, although those for the MYNN configuration are qualitatively similar.

The capacity factor tends to be higher in the central to southeastern portion of the APWRA, where the southwesterly speedup

flows are less obstructed by upstream terrain. This trend is consistent across the three months of the study period, although425

the overall capacity factors decrease noticeably in September. It should be noted that the Summit Wind plant, which became

operational in 2021 after the study period, is located in the central APRWA to the southwest of the turbines considered here

(see Hoen et al., 2018). This location is generally upstream of other plants during the summertime and likely takes advantage

of the spatial trend in capacity factor seen in Figure 13. However, spatial variability in the APWRA capacity factor is expected

to change seasonally due to shifts in the synoptic forcing and the predominant wind direction.430

5 Conclusions

This study examined mesoscale model predictions of boundary layer winds and turbulence in the Altamont Pass Wind Re-

source Area of California, where the diurnal regional seabreeze and associated terrain-driven speedup flows drive wind energy

production during the summer months. The recurring nature of these terrain-driven wind accelerations, as well as their im-

portance to the wind energy industry, makes the APWRA a useful testbed for numerical weather prediction. In particular, this435

study focused on the treatment of turbulence in mesoscale models, which require a PBL scheme to parameterize subgrid-scale

turbulent mixing. The WRF-based 3D PBL scheme of Juliano et al. (2022) with the PBL approximation, which treats both

vertical and horizontal turbulent mixing, was evaluated in comparison to a traditional 1D PBL scheme, MYNN, which treats

only vertical turbulent mixing.
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Both PBL treatments were tested during the nearly 3-month-long HilFlowS experiment (Wharton and Foster, 2022), which440

took place near the APWRA in the summer of 2019. As noted by Banta et al. (2020) in their study of recurring marine-air

intrusions, capturing repeated flow dynamics, and thus repeated model errors, allows for robust model evaluation. Here, as

in Banta et al. (2020), composite averaging was used to analyze model errors over the course of the study period. Model

predictions were evaluated against data from two profiling lidars and a meteorological tower deployed during HilFlowS, as

well as surface meteorological stations within the MesoWest network. Thus, both vertical and horizontal variability in model445

errors was examined.

In terms of overall model skill, the 3D PBL and MYNN configurations performed similarly over the duration of the study

period, with both capturing the general timing and direction of the speedup flows but overestimating their magnitude within a

typical wind turbine rotor layer. Additionally, neither model configuration captured the persistent jet-like flow observed by the

lidars, and thus both models underestimated near-surface wind speeds and turbulence. Despite these overall similarities, sev-450

eral notable differences were found between PBL treatments. In terms of vertical variability, the 3D PBL scheme demonstrated

improved predictions of wind speed profiles during the afternoon acceleration phase of the diurnal speedup flows, and this was

associated with a reduction in TKE overestimates, as compared to MYNN. Additionally, the 3D PBL scheme showed evidence

of a more pronounced near-surface jet and reduced wind speeds aloft, as seen in the observations. In terms of horizontal vari-

ability, the 3D PBL scheme showed reduced positive wind speed bias at most MesoWest surface stations within the APWRA.455

This suggests that it more accurately captures horizontal variability over complex terrain.

In future studies, the use of increased horizontal resolution could help to further distinguish 3D PBL performance relative

to MYNN. As model grid spacing progresses further into the gray zone, larger horizontal gradients will be resolved, leading

to differences in flow predictions. The 3D PBL scheme has been tested successfully in the past with horizontal grid spacing

between 250 and 750 m (Juliano et al., 2022; Arthur et al., 2022; Wiersema et al., 2023), although careful setup is still required460

to ensure model stability. To accurately capture the observed jet-like flow at the HilFlowS site, increased vertical resolution

and an LES closure scheme are likely required.

To further evaluate the 3D PBL scheme for wind energy applications, the mesoscale wind farm parameterization of Fitch

et al. (2012) was employed. The WFP was recently coupled to the 3D PBL scheme by Rybchuk et al. (2022) and tested in an

idealized ocean environment. The present study provided an opportunity to further test the 3D PBL-WFP implementation, as465

compared to the standard WRF implementation with MYNN, in a realistic complex-terrain scenario. Overall, the 3D PBL-WFP

performs similarly to the MYNN-WFP, providing additional confidence in the implementation.

Modeled capacity factors capture the general diurnal trend of the observed speedup flows, but are roughly 7–11% larger

than EIA-reported values in the APWRA. This is likely due to overestimated wind speeds during the peak and decelerating

phase of the speedup events, as well as other factors including turbine operation and differences between the modeled and470

actual turbines. The largest differences in capacity factor estimates between the MYNN and 3D PBL configurations were seen

at times at which the 3D PBL configuration displayed lower bias values. This suggests that the 3D PBL-WFP configuration

predicts slightly more realistic capacity factors, although additional comparisons are required for confirmation.
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In closing, this study has helped to establish the utility of the 3D PBL scheme for wind energy applications in complex

terrain. Its overall similar performance to MYNN, a much more established PBL scheme, is encouraging, as is evidence475

of improved performance under certain conditions and across the spatially heterogeneous APWRA. However, the 3D PBL

scheme requires additional development and testing to confirm its robustness. As mentioned above, the 3D PBL scheme allows

more run-time flexibility in turbulence treatment relative to MYNN and other 1D PBL schemes, which could facilitate rapid

performance improvements. Ultimately, increased understanding of model sensitivity to grid spacing and turbulence closure

parameters (e.g., length scales, closure constants, and use of the boundary layer approximation) will guide the use of the 3D480

PBL scheme for high-resolution numerical weather prediction and wind energy applications.
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available on Zenodo (see Arthur, 2024). Modeled wind turbine specifications are based on data from NREL (2022) and wind-turbine-
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